Es gibt eine Reihe von Ansätzen zur Modellierung von Zeitreihen. Wir skizzieren einige der häufigsten Ansätze unten. Trend, saisonal, Restzersetzungen Ein Ansatz ist es, die Zeitreihen in einen Trend-, Saison - und Restbestandteil zu zerlegen. Eine dreifache Exponentialglättung ist ein Beispiel für diesen Ansatz. Ein anderes Beispiel, das saisonale Löß genannt wird, basiert auf lokal gewichteten kleinsten Quadraten und wird von Cleveland (1993) diskutiert. Wir behandeln nicht saisonale Löss in diesem Handbuch. Frequenzbasierte Methoden Ein anderer Ansatz, der in der wissenschaftlichen und technischen Anwendung häufig verwendet wird, besteht darin, die Serie im Frequenzbereich zu analysieren. Ein Beispiel für diesen Ansatz bei der Modellierung eines sinusförmigen Datensatzes wird in der Strahlablenkungsfallstudie gezeigt. Das Spektraldiagramm ist das Hauptinstrument für die Frequenzanalyse von Zeitreihen. Autoregressive (AR) Modelle Ein allgemeiner Ansatz für die Modellierung univariater Zeitreihen ist das autoregressive (AR) Modell: Xt delta phi1 X phi2 X cdots phip X At, wobei (Xt) die Zeitreihe, (At) das weiße Rauschen und delta ist Links (1 - sum p phii rechts) mu. Mit (mu) das Prozeßmittel. Ein autoregressives Modell ist einfach eine lineare Regression des aktuellen Wertes der Serie gegen einen oder mehrere vorherige Werte der Serie. Der Wert von (p) wird als Ordnung des AR-Modells bezeichnet. AR-Modelle können mit einer von verschiedenen Methoden analysiert werden, einschließlich Standard-linearen Methoden der kleinsten Quadrate. Sie haben auch eine einfache Interpretation. Moving Average (MA) Modelle Ein weiteres gemeinsames Konzept für die Modellierung von univariaten Zeitreihenmodellen ist das gleitende Durchschnittsmodell (MA): Xt mu At - theta1 A - theta2 A - cdots - thetaq A, wobei (Xt) die Zeitreihe (mu ) Ist der Mittelwert der Reihe, (A) sind weiße Rauschterme, und (theta1,, ldots,, thetaq) sind die Parameter des Modells. Der Wert von (q) wird als Ordnung des MA-Modells bezeichnet. Das heißt, ein gleitendes Durchschnittsmodell ist konzeptionell eine lineare Regression des aktuellen Wertes der Reihe gegen das weiße Rauschen oder zufällige Schocks eines oder mehrerer früherer Werte der Reihe. Es wird angenommen, daß die zufälligen Schocks an jedem Punkt von der gleichen Verteilung, typischerweise einer Normalverteilung, mit einer Stelle bei Null und einer konstanten Skala kommen. Die Unterscheidung in diesem Modell ist, dass diese zufälligen Schocks propagiert werden, um zukünftige Werte der Zeitreihe. Das Anpassen der MA-Schätzungen ist komplizierter als bei AR-Modellen, da die Fehlerterme nicht beobachtbar sind. Dies bedeutet, dass iterative nicht-lineare Anpassungsverfahren anstelle von linearen kleinsten Quadraten verwendet werden müssen. MA-Modelle haben auch eine weniger offensichtliche Interpretation als AR-Modelle. Manchmal schlagen die ACF und PACF vor, dass ein MA-Modell eine bessere Modellwahl wäre und manchmal beide AR - und MA-Begriffe in demselben Modell verwendet werden sollten (siehe Abschnitt 6.4.4.5). Beachten Sie jedoch, dass die Fehlerterme nach dem Modell unabhängig sein sollten und den Standardannahmen für einen univariaten Prozess folgen. Box und Jenkins einen Ansatz, der den gleitenden Durchschnitt und die autoregressiven Ansätze in dem Buch Time Series Analysis: Forecasting and Control (Box, Jenkins und Reinsel, 1994) kombiniert. Obwohl sowohl autoregressive als auch gleitende Durchschnittsansätze bereits bekannt waren (und ursprünglich von Yule untersucht wurden) bestand der Beitrag von Box und Jenkins darin, eine systematische Methodik zur Identifizierung und Schätzung von Modellen zu entwickeln, die beide Ansätze berücksichtigen könnten. Dies macht Box-Jenkins Modelle eine leistungsfähige Klasse von Modellen. Die nächsten Abschnitte behandeln diese Modelle im Detail.8.4 Verschieben von Durchschnittsmodellen Anstatt Vergangenheitswerte der Prognosedatei in einer Regression zu verwenden, verwendet ein gleitendes Durchschnittsmodell vergangene Prognosefehler in einem regressionsähnlichen Modell. Y c et the theta e dots theta e, wobei et weißes Rauschen ist. Wir bezeichnen dies als MA (q) - Modell. Natürlich beobachten wir nicht die Werte von et, also ist es nicht wirklich Regression im üblichen Sinne. Man beachte, daß jeder Wert von yt als gewichteter gleitender Durchschnitt der letzten Prognosefehler betrachtet werden kann. Jedoch sollten gleitende Durchschnittsmodelle nicht mit der gleitenden glatten Glättung verwechselt werden, die wir in Kapitel 6 besprochen haben. Ein gleitendes Durchschnittsmodell wird für die Prognose zukünftiger Werte verwendet, während die gleitende gleitende Durchschnittskurve für die Schätzung des Trendzyklus der vergangenen Werte verwendet wird. Abbildung 8.6: Zwei Beispiele für Daten aus gleitenden Durchschnittsmodellen mit unterschiedlichen Parametern. Links: MA (1) mit yt 20e t 0,8e t-1. Rechts: MA (2) mit y t e t - e t-1 0,8e t-2. In beiden Fällen ist e t normal verteiltes Weißrauschen mit Mittelwert Null und Varianz Eins. Abbildung 8.6 zeigt einige Daten aus einem MA (1) - Modell und einem MA (2) - Modell. Das Ändern der Parameter theta1, dots, thetaq führt zu unterschiedlichen Zeitreihenmustern. Wie bei autoregressiven Modellen wird die Varianz des Fehlerterms et nur den Maßstab der Reihe ändern, nicht die Muster. Es ist möglich, jedes stationäre AR (p) - Modell als MA (infty) - Modell zu schreiben. Beispielsweise können wir dies bei einem AR (1) - Modell demonstrieren: begin yt amp phi1y et amp phi1 (phi1y e) et amp phi12y phi1 e et amp phi13y phi12e phi1 e et amptext ende Provided -1 lt phi1 lt 1 wird der Wert von phi1k kleiner, wenn k größer wird. So erhalten wir schließlich yt und phi1 e phi12 e phi13 e cdots, ein MA (infty) Prozess. Das umgekehrte Ergebnis gilt, wenn wir den MA-Parametern einige Einschränkungen auferlegen. Dann wird das MA-Modell invertierbar. Das heißt, dass wir alle invertierbaren MA (q) Prozess als AR (infty) Prozess schreiben können. Invertible Modelle sind nicht einfach, damit wir von MA-Modellen auf AR-Modelle umwandeln können. Sie haben auch einige mathematische Eigenschaften, die sie in der Praxis einfacher zu verwenden. Die Invertibilitätsbedingungen sind den stationären Einschränkungen ähnlich. Für ein MA (1) Modell: -1lttheta1lt1. Für ein MA (2) - Modell: -1lttheta2lt1, theta2theta1 gt-1, theta1 - theta2 lt 1. Kompliziertere Bedingungen gelten für qge3. Wiederum wird R kümmern sich um diese Einschränkungen bei der Schätzung der models. Moving Average - MA Was ist ein Moving Average - MA Eine weit verbreitete Indikator in der technischen Analyse, die glätten Preisaktion durch Ausfiltern des Lärms aus zufälligen Preisschwankungen hilft. Ein gleitender Durchschnitt (MA) ist ein Trend - oder Nachlaufindikator, da er auf vergangenen Preisen basiert. Die zwei grundlegenden und allgemein verwendeten MAs sind der einfache gleitende Durchschnitt (SMA), der der einfache Durchschnitt einer Sicherheit über eine definierte Anzahl von Zeitperioden ist, und der exponentielle gleitende Durchschnitt (EMA), der den jüngeren Preisen ein größeres Gewicht verleiht. Die häufigsten Anwendungen von MAs sind, die Trendrichtung zu identifizieren und zu bestimmen, Unterstützung und Widerstand Ebenen. Während MAs von sich aus nützlich genug sind, bilden sie auch die Basis für andere Indikatoren wie die Moving Average Convergence Divergence (MACD). Laden des Players. BREAKING DOWN Moving Average - MA Als SMA-Beispiel gilt eine Sicherheit mit folgenden Schlusskursen über 15 Tage: Woche 1 (5 Tage) 20, 22, 24, 25, 23 Woche 2 (5 Tage) 26, 28, 26, 29, 27 Woche 3 (5 Tage) 28, 30, 27, 29, 28 Eine 10-tägige MA würde die Schlusskurse für die ersten 10 Tage als ersten Datenpunkt ausrechnen. Der nächste Datenpunkt würde den frühesten Preis senken, den Preis am Tag 11 addieren und den Durchschnitt nehmen, und so weiter, wie unten gezeigt. Wie bereits erwähnt, verzögert MAs die aktuelle Preisaktion, weil sie auf vergangenen Preisen basieren, je länger der Zeitraum für die MA ist, desto größer ist die Verzögerung. So wird ein 200-Tage-MA haben eine viel größere Verzögerung als eine 20-Tage-MA, weil es Preise für die letzten 200 Tage enthält. Die Länge des zu verwendenden MA hängt von den Handelszielen ab, wobei kürzere MAs für den kurzfristigen Handel und längerfristige MAs eher für langfristige Anleger geeignet sind. Die 200-Tage-MA ist weithin gefolgt von Investoren und Händlern, mit Pausen über und unter diesem gleitenden Durchschnitt als wichtige Trading-Signale. MAs auch vermitteln wichtige Handelssignale auf eigene Faust, oder wenn zwei Durchschnitte überqueren. Eine steigende MA zeigt an, dass die Sicherheit in einem Aufwärtstrend liegt. Während eine sinkende MA zeigt, dass es in einem Abwärtstrend ist. In ähnlicher Weise wird das Aufwärtsmoment mit einer bulligen Frequenzweiche bestätigt. Die auftritt, wenn eine kurzfristige MA über einem längerfristigen MA kreuzt. Die Abwärtsmomentum wird mit einem bärischen Übergang bestätigt, der auftritt, wenn eine kurzfristige MA unter einem längerfristigen MA liegt.
No comments:
Post a Comment